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AIIItnct-This paper considers the problem of distortion in thin-walled structural members with
closed croSHCCtions such u mipt be used u sinaJe-spined, sinaJe or multi-cell box beams in bridae
declts. The problem of distortion bu been formulated in a more aeneraI way thaD in previous
attempts. The distortion of a crou-section bu been cbancterised by a lingle representative
parameter and appropriate functions of this parameter have been used u the desrees of freedom
in a finite element representation.

Consideration is first given to the cross-sectional deformation due to tonion and then a aeneral
distortional moment is defined. The paper continues with derivations of expressions to obtain the
distortional normal and shear stresses in a thin-walled section. Consideration is then given to the
transverse resistance of a cross-section to distortion. A discussion follows on the interaction
between bending, tonion and distortion and the way in which the formulation can be incorporated
into the finite element method. Finally, examples are solved for straipt and curved box beams.

I. INTRODUCTION

The closed, transverse cross-sections of thin-walled structural members with insufficient
transverse stiffening may deform when subjected to a generalised loading system.

A box spine-beam is a type of thin-walled structural member used in bridge deck
construction in which the spine provides the main source of strength in single-spined or
multi-spined superstructures. The hollow box section of the spine contributes considerably
to the torsional stiffness of the bridge deck and distributes the transverse lateral load.
Accordingly, the box section provides a significantly favourable pattern of flexural and
other stresses, when considered in conjunction with its high longitudinal bending strength.

The cross-section of thin-walled box spine-beams may distort under torsional effects
and in this case the distortion is the main source of warping stresses. Moreover, the
additional transverse bending stresses due to the distortion of the cross-section may be of
the same order of magnitude as the longitudinal bending stresses. It is, therefore, essential
to take account of distortional behaviour when this is thought likely to occur in addition
to considering bending and torsional effects.

The structural action which is associated with distortion has been investigated by
previous researchers, notably Vlasov[l], Steinle[2], Dabrowski[3, 4], Kristek[5] and Wright
et aI. [6]. There are computational advantages to be gained if the phenomenon ofdistortion
could be characterised by a single representative parameter. Moreover, appropriate
functions of such a parameter could represent the degrees of freedom of a finite element
formulation for distortion. In this way, distortional effects could be taken into account in
the analysis of thin-walled members in addition to the effects of flexure and warping
torsion.

This paper is concerned with the formulation of the effects of distortion in single
spined, single or muiti-ceU thin-walled box structures with vertical axes of symmetry. The
formulation is presented in a more general form than in previous attempts to solve the
problem of distortion. In particular, the derivation which is given in this paper can be
combined with the finite element method to solve a wide range of problems. Some
examples are given which demonstrate the validity of the approach.
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2. THE CROSS-SECTIONAL DEFORMATION DUE TO TORSION

Figure I shows the deformed cross-section of a single-spined box beam subjected to
torsion. The corner points of the cross-section are horizontally and vertically displaced by
the components a,. ab and v" Vb respectively. The tangent displacement of the side webs
may be expressed by

Vh =V, sin tP + ii, cos tP = Vb sin tP - Ub cos tP

where tP is the angle of the top flange with respect to the inclined side web. Hence

_ _ u,+ Ub
Vb = V, + --A.-.

tan",

(I)

(2)

It can be shown that the rotation of the side web tP. due to deformation is given by

A. =u,+ Ub
'1'. h (3)

and is identical for all webs. The rotations of the upper and lower flanges are not generally
identical and are defined respectively by

'" 2v, (4).,' ="b;

and

2Vb
(5)"'.,b =b;'

The relationship between "'•. " "'.,b and tP. can now be expressed by the equation

.1, b, 2h
".,b =b/··' + bb tan tP tP.· (6)

Thus a characteristic distortional angle may be used to represent the cross-sectional
deformation. This angle is defined as the sum of the rotations of the top flange of the
cross-section and of the inclined side web, i.e.

(7a)

or

(7b)

It can be seen that the distortional angle may be considered as a generalised distortional
displacement.

Furthermore, distortional warping displacement W•• d normal to the cross-section, will
have occurred when the deformation of the cross-section is not constant along the beam.
By analogy with warping torsion theory[7], the tangential displacement ",. d from the
mid-line of the wall can be expressed as the product of a distribution function v,(S) and
the distortional angle, i.e.

(8)

in which S is the curvilinear co-ordinate along the mid-line of the wall.
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Fig. 1. Deformation of uni-symmetrical box spine-beam.
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To develop an approximate theory which neglects the effect of shear deformation, it
may be assumed that the in-plane displacement is accompanied by sufficient out-of-plane
warping to annul the average shear strain in the plates which form the cross-section. This
condition is expressed as

The substitution of eqn (8) into eqn (9) and the subsequent integration give

W.,d= - CJJ/I...S)jiz)

in which CJJ//(S) = f:v.(S) cis

(9)

(10)

(11)

is the distribution of the longitudinal displacement and is defined as the unit distortional
warping function. It is possible to extend the analogy between the section properties and
functions which have been considered so far, with the corresponding quantities in the
phenomenon of warping torsion[7].

3. THE DEFINITION OF THE GENERALISED DISTORTIONAL MOMENT

In Fig. 2, the eccentric distributed loads Px and P, acting along the x and y axes
respectively can be replaced by shear forces acting through the shear center and a pair of
anti-symmetric twisting forces. The anti-symmetric forces may be divided into two groups
of co-planar forces consisting of the pure torsional force and the force which acts along
the perimeters to deform the cross-section (Fig. 3).

The equivalent pure torsional forces may be obtained by integrating a constant shear
flow q, given by the Bredt-Batho formula, q = min, in which mz is the twisting moment
and Q denotes twice the value of the entire area enclosed within the perimeter of the
cross-section. Consequently, the torsional forces are in equilibrium with the external
twisting moments m." = p,ex and m.1t = - pxe,.

, The forces which deform the cross-section are self-equilibrating. By using the appro
priate equilibrium equations, the distortional forces associated with the eccentric load
acting vertically are given by

(12)
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Fig. 2. Bending and twisting components of eccentric loads.

and the distortional forces associated with the eccentric load acting horizontally are given
by

(13)

The resultant of these two groups of distortional f9rces adjacent to the box comers are
equal and diametrically opposed to each other (Fig. 4). These diagonal resultants produce
racking of the cross-section and are evaluated from the following expressions

(14)

and,

The vertical and horizontal components of the diagonal resultants are expressed as

s _ bbmlll
~ - 2(b, + bb)b,

b~1II
SA = 4hb,

(IS)

(16)
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(a) Vertical distortional component resolved at box corners

(b, Horizontal distortional component resolved at box corners

Fig. 4. Distortional components resolved at box comers.

(17)

It can also be seen from Fig. 4 that the distortional diagonal resultants, which arise from
the vertical and horizontal eccentric loads respectively, are in the opposite sense to each
other, while the associated twisting loads are in the same sense.

It should be noted that each of the four distortional forces acting along the sides of
the trapezoid in Fig. 3 provides equal and opposite couples of magnitude m. = bb/2b,(m.,,)
and mdh = -lmv. respectively. To correspond. with the generalised distortional displace
ments, which have already been defined, a distortional moment which may be regarded as
the generalised distortional force, can now be defined as

(18)
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For a rectangular section b~ =b, and

851

(19)

If the vertical eccentric load is applied to the cantilever portion of the cross-sections,
the fixed moment of this cantilever is taken partly by the web and partly by the top flange.
By employing a distribution factor Cd' defined as the ratio of the distributed moment in
the top ftange to the applied fixed moment, the distortional moment due to the vertical
eccentric load acting on the cantilever portion, can be expressed as,

where ad = bJb, is the ratio of the widths of the bottom and top ftanges and

bJl =eJl- b,/2. (21)

The distribution factor '" may be obtained from a frame analysis of a unit slice of the
cross-section in which the bottom comers are supported both horizontally and vertically.

4. THE DISTRIBUTION OF NORMAL AND SHEAR STRESSES

Since the warping displacements are unlikely to be constant along the axis of a box
beam, longitudinal normal stresses and associated shear stresses may be expected to arise
as a result. The distortional warping strain f:z,.d is obtained from eqn (10) as

(22)

and the corresponding warping normal stresses are given by

(23)

where E1=E/l- y2.

The forces which induce distortion are a self-equilibrating system and, therefore, the
following conditions should be satisfied

LU'u dA =LU'uX dA =LU'uY dA = O. (24)

To represent the resultant of the distortional warping stresses, a distortional bi-moment
is defined as

(25)

where

(26)

is the distortional warping moment of inertia. From eqns (23) and (26) the warping stress
may be written as

(27)

which is analogous to the normal stress formulation in warping torsion theory.
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Fig. 5. Distribution ofdistortional warping stresses of a box beam with a vertical axis ofsymmetry.

The cross-section shown in Fig. 5 has a vertical axis of symmetry. In accordance with
ordinary folded plate theory[8] the variation of warping stress within each plate element
is assumed to be linear. The anti-symmetry of the diasram of (J)// ensures that the fint and
third conditions given by eqn (24) are satisfied. The following ratios may be defined from
the linear variation of (JJI/ as shown in Fig. S.

and

(JJI/i XI
(1.1=-'=-

(JJI/.I XI

AI = (JJ1/,Jt+1+2 = X ft + I +2

(JJ1/,Jt+3 Xft +3

fJ = (JJ1/,/I+3

(JJI/.I

WII,II+I+2 _ ~,.Q
tlb,1 = 1\ 1'.J

Wil,i

(28)

where xo, X,-----X2ll+3, are the x co-ordinates related to the local co-ordinate system. The
ratio (JJI/ at the two ends of individual webs may be expressed as

(29)
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(30)

(31)

The ratio fJ can be obtained from the equilibrium condition J..O'I,x dA = 0 which becomes,
for the cross-section in Fig. 5,

fJ _M,+Jdu
-11"+ J211,2

where M, is the moment with respect to the y axis of symmetry due to the normal stresses
acting on the upper flange. Jd" is obtained from M", the moment with respect to the y axis
of symmetry due to the nonnal stresses acting on the lower flange, i.e.

M,,= -fJJd" (32)

Jd11,1 and SJu are related to Mil' the moment with respect to the y axis of symmetry due
to the normal stresses acting on the webs, i.e.

(33)

In order to relate the normal stresses to the displacements, the compatibility condition
along the upper left comer edge of the cross-section in Fig. 5 is established using ordinary
folded plate theory. Hence

Differentiating eqn (7) twice and then substituting eqn (34) gives

" _ 2(b, + b,,)({Jb, +b,,) jj
"IJ - E hb 2b (1)11.1 1/'

1 , "

Substitution of eqn (35) into eqn (23) gives

- 2(b, + b,,)({Jb,+ b,,) 2 I'
Ull.1 = hb,2b" WII,IJ/I'

By comparing eqn (27) with eqn (36) the following is then obtained

(34)

(35)

(36)

(37)

Once WI1,I and fJ have been obtained for a cross-section, the normal warping stress
distribution can be obtained.

The in-plane shear stresses may be determined from the equilibrium condition given
by

OUII OQll 0,-+-=oz as (38)
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in which qll is the distortional warping shear flow and the compatibility condition

l qll dt =0J:t (39)

which applies for each cell. By superposition, the total shear flow on the walls of the
cross-section is obtained from

B;/ ~
(40)ql/=-SII

JII

where

SI/ = q~/ - SI/ (41)

is called the reduced distortional statical moment of area, SI/ is the distortional statical
moment of area and is expressed as

(42)

The unit distortional shear flow function q~/ can be obtained from the solution of a set
of flexibility equations for the cross-section[9].

S. THE TRANSVERSE FLEXURAL RESISTANCE OF THE CROSS-SECTION
TO DISTORTION

If the element of the cross-section shown in Fig. 6 is considered as a Vierendeel frame
of unit length, the distortional loading subjects the frame to transverse flexure. This
flexural frame action, which is caused by the transverse flexural stiffness of individual
plates of the box section, provides a resistance to distortion in addition to that contributed
by the constraint of warping.

Substituting eqn (27) into the equilibrium condition given by eqn (38) and integrating
gives

(43)

where 51/ is given by eqn (42). Mter differentiating eqn (25) and substituting, eqn (43)
becomes

(44)

The gradient of the longitudinal warping stresses, therefore, causes the shear flow q{/. The
total distortional moment may now be split into two components, Md and MI, i.e.

(45)

Fig. 6. Element of box beam with form of elementary frame.



and

Effect of distortion in thin-walled box-spine beams 855

(46)

If the effective frame stiffness of the section kd per unit length is defined as the resisting
component corresponding to a unit distortional angle, then by equating internal and
external energy

(47)

where Jd is defined as the distortional second moment of area.
The distortional frame stiffness may be evaluated from an analysis in which the lower

comer points are constrained in the horizontal and vertical directions and a diagonal force
with unit horizontal component is applied to a unit length of cross-section. For a single
cell cross-section it is possible to use the method of influence coefficients to determine kd•

A computer stiffness method is to be preferred for more complex cross-sections in which
an accurate representation of the transverse flexural rigidity of individual plates is
included[9].

Once the equivalent Vierendeel frame of a particular section has been analysed, the
distribution of associated transverse distortional bending moments m. and distortional
shear forces q. at the junction of the individual plates can be evaluated. These become
the influence values ofmoment and stress and are associated with the influence distortional
angle 'Yd' If Yd is the actual distortion angle at a particular section, then the transverse
distortional moments and distortional shear forces per unit length are given by

m.m.=-_-y"
Yd

q.
q. - -=-y".

Yd

(48)

The transverse distortional bending stress <1.,1 associated with eqn (48), is due to the
anti-symmetrical component of load. For multi-cell box beams, the symmetrical com
ponent of load also produces a transverse stress <1.;l' Thus, the final influence values
obtained from the computer frame analysis of a multi-eell box beam are the superposition
of two loading cases, i.e.

(49)

where a•.I and a.;l are the influence values of the transverse distortional bending stress
due to symmetrical and anti-symmetrical components of load respectively[9, 10].

The transverse stresses due to the distortion of the cross-section can be of the same
order as the longitudinal stresses associated with longitudinal bending and warping. The
longitudinal moments of the plates per unit width may be obtained approximately by
multiplying the transverse bending moments by Poisson's ratio.

6. SINGLE-SPINED BOX BEAMS CURVED IN PLAN
For the case of single-spined box beams which are curved in plan, the cross-sectional

dimensions are assumed to be small in relation to the radius of curvature. Results of
numerical analysis[l2] demonstrate that in a curved box beam, the transverse distortional
stresses due to the anti-symmetric component of the load are similar to those in an
equivalent straight box beam, with a span equal to the developed length of the center line
of the curved box beam. A modification of the transverse frame analysis which has been
discussed in the previous section may, therefore, be used for the distortional analysis of
curved members. Figure 7 illustrates a typical example in which a curved cross-section is
represented by an equivalent transverse frame.
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(a) Typical frame considered at a nodal section in the
transverse frame analysis

(b) Simplified equivalent transverse frame

Fig. 7. Simplification of a curved box section.

Additional distortional forces occur in box beams which are curved in plan due to the
radial component of the longitudinal bending stresses. The radial component, (1R' of the
longitudinal bending stress (1.,6, for unit length of box, is given by

(50)

where R is the radius of curvature. A system of radial forces may be replaced by a
horizontal force acting through the shear center and a torsional moment. Thus, the
additional distortional moment per unit length can be expressed as:

(51)

where M" is the longitudinal bending moment about the x axis and Jld is the initial.
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curvature multiplication factor which is given by

J-ld =~.5f y[y - (v. - y,)] dA
J<}C A

857

(52)

in which Y. and y, are the vertical co-ordinates of the shear centre and the centroid
respectively from the mid-line of the top flange.

Generally, the bending moments MJt are not given at the outset and the distribution
of bending and torsional moments in curved box beams may be approximated initially by
assuming non-deformable cross-sections. The distortional loading is then treated as the
sum of the distortional component of the loading and the additional distortional
component of the radial forces.

7. THE DIFFERENTIAL EQUATION FOR DISTORTION

The strain energy corresponding to the distortional warping stresses may be written as

(53)

and the energy required to distort a frame formed by a length dz of the structure is

U2 =~f klll(z) dz

the potential energy of the external generalised force is

f[ IJodMx]V = - JI mJz) + R 'YJz) dz.

(54)

(55)

Using the Euler-Lagrange equation to obtain the first variation of the total potential
energy functional, enables the differential equation for distortion to be written as

(56)

where

(57)

and is called the distortional decay coefficient.

8. INTERACTION BETWEEN BENDING, TORSION AND DISTORTION

Figure 8 shows a typical cross-section of a box which is subjected to bending, torsion
and distortion. The bending-torsional displacements in the plane of the cross-section are
given in terms of the lateral and vertical translations, u(z) and v(z) respectiyely, of the
centroid G and the twisting anJle 8, with respect to the shear centre. The distortion of the
cross-section is represented by 'Y<I and the longitudinal displacements wz(X, y, z) in the z
direction consist of those due to bending, torsion and distortion. The following re
lationships may be obtained from Fig. 8 and the foregoing arguments[13]

or
8, == k.", + 4>J, l'd =.", - 4>,.

(58a)

(58b)
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Fig. 8. Displacements in the cross-sectional plane.

The effect of distortion can be considered to increase the twisting. angle and, therefore, to
reduce the torsional stiffness of the cross-section. The ftange rotation "'.. may be regarded
as an effective twisting angle from which a torsional stiffness reduction factor is defined
by

(59)

Thus, an iterative procedure[14] can be adopted to account for this interaction effect by
suitably modifying the torsional stiffness. Normally, two or three successive reductions of
the torsional stiffness are sufficient to include the effect of distortion.

9. FINITE ELEMENT REPRESENTATION

The foregoing theoretical considerations may be included in a finite element formu
lation of the distortion in single-spined box beams. Such a formulation has been attempted
previously[I I] and is an alternative to the differential equation formulation given by eqn
(56).

A general thin-walled box beam element has been derived by the authors[12], which
may be curved in space and may have a variable cross-section generated by straight lines.
A cross-section is assumed to have a vertical axis of symmetry.

The element axis is defined as the locus of the centroids of the cross-section which may
be distinct but parallel to the ftexural axis (locus of the shear centres). In addition to the
usual six degrees of freedom for beams at each node represented by the three translations
and three rotations, three more degrees of freedom have been incorporated in the
formulation to account for warping and distortion effects. These additional degrees of
freedom are designated as the rate of change of twisting angle v, the distortional angle of
the cross-section 'Id and the rate of change of distortional angle "'d' Thus, the generalised
displacements in the local co-ordinate system for the beam elements are given by

(60)

The element has two end nodes and a mid-point node situated on the axis. The effect of
shear lag is included by adopting an effective width concept.

Two coordinate schemes are used in the element formulation: the Cartesian orthogonal
coordinate system and the natural curvilinear coordinate system. The origin of the
Cartesian coordinate system is located at the centroid of the cross-section and the
orientation of the local xy axes is assumed to coincide with the principal axes of the
cross-section. The local z axis is tangential to the element axis. The local y axis usually
represents the vertical axis of symmetry whereas the local x axis is defined by a right
handed orthogonal system. The origin of the natural coordinate system lies at the middle
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point of the element axis. It is assumed that the natural co-ordinate' varies between - I
and + I on the respective faces of the element. The geometry of the element axis is then
defined as a mapped image of the straight parent element in which hierarchical shape
functions are used.

The exact integration of the 27 x 27 element stiffness matrix may be achieved by using
a three point quadrature for the axial and bending contributions and a six point
quadrature for the torsional and distortional contributions. Since shear deformation has
been included in the formulation for which the rotations due to bending are interpreted
as shear strains, an excess of shear strain energy is stored by the element. This problem
can be overcome by using a reduced integration scheme. Thus, the two point integration

E= 20.7 KN/mml

G/E=1/2

(a) Cross-section and

-0.903 LUSAS solution
- .866Pr.s.nt solution

(b) Deflections at midspan (mm)

1.7702 2.1578 LUSAS solution
1·6024 1.8659 Pr.SI.·nt solution

(c) Transverse bending moments at midspan (kN m/m)

_ ....... -.- '""*.;.0.;.:.;162 LUSAS solution
0.186 Prts.ntsolution

(d) Warping stresses at midspan (kN/mm2)

Fig. 9. A double cell box beam under twisting loads.
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procedure, which exactly integrates the bending contribution, but underintegrates the
shear contribution is used.

The perfonnance of the element has been compared favourably with the results
obtained using the differential equation, the results of other researchers and with the results
of model experiments.

10. EXAMPLES

(I) A double cell box beam subjected to twisting loads
The distortional and torsional behaviour of a box beam with a trapezoidal double cell

cross-section has been demonstrated by the analysis of a simply-supported prestressed
concrete bridge given by Richmond[15]. The span of the box beam is 61 m (200ft); the
trapezoidal cross-sections and the loading are shown in Fig. 9.

R-3150mm I
1--.....;....:..,.--~..

39UN

{J

(a) Longitudinal membrane stresses due to two point loads at the tip

78.48 NANn
i

oI
-19.62 Nlraral

Thin shell box
-'-'- element solution

______ Present study

Experimental---0--- results

-I
(b) Longitudinal membrane stresses due to one point load at the tip

Fig. 10. Transverse distribution of longitudinal membrane stresses at i arc length section from fixed
end.
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(a) Transverse bending stresses at outer surface due to two point
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861

o

-'96~2

Present study

--o\t-- Experimental results

Thin shell element solution

784.8"

U

• I
(b) Transverse bending stresses at outer surface due to one point

load at the tip
Fig. 11. Transverse bending s~s at outer surface at ~ arc length section from fixed end.

Eight thin-walled box beam clements were used for the analysis. Figure 9 shows the
solution for this example compared with a thin shell finite clement solution[I6].
(2) Curved cantilever box beam model

The behavior of a curved cantilever box beam model has been investigated by the
authors. Some typical examples of the comparison between the experimental results and
those obtained from the thin-walled box beam element and the thin shell clement are given
in Figs. 10 and 11.

The distortional angle of the tip of the cantilever model was measured as 0.01649
radians for a two point load case and 0.04448 radians for a one point load case. The
corresponding values calculated using the beam clement were 0.01649 radians and 0.04597
radians respectively.

11. CONCLUSIONS

A formulation which includes the effects of distortion in a variety of thin-walled box
spine-beams bas been proposed. This formulation, which bas been incorporated into a
finite clement procedure, is presented in a more general form than in previous attempts
to solve the problem of distortion in thin-walled structures.

Some results have been given which demonstrate the validity of the theory for both
straight and curved structures. The formulation is limited to cross-sections with a vertical
axis of symmetry. Since symmetric cross-sections occur frequently in engineering struc-
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tures, however, this is not a particular disadvantage and the approach may be used, for
example, for practical bridge deck analysis.
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